Ancient DNA brings to life history of the iconic aurochs - News & Events | Trinity College Dublin
On problem with believing a myth that Earth was made out of nothing by magic 6-10,000 years ago is that there are paintings in caves in France that are older than that, showing animals that were around before then.
And a problem with believing that the same magician created all living things just as they are today without any ancestors, is that those same cave paintings show species that were ancestral to some of the animals that are around today, such as domestic cattle.
And a problem with believing that the same magician created all the animals for the benefit of humans is the evidence that all our domestic animals, with almost no exceptions, have been improved by selective breeding from wild ancestors. Did their putative creator not know what humans would need or how they would use the animals it created for them?
Aurochs, their evolution and relationship to domestic cattle. Aurochs (Bos primigenius) were large wild cattle that roamed parts of Europe, Asia, and North Africa. They are considered the ancestors of modern domestic cattle, playing a significant role in human history and agriculture. Here's an overview of the aurochs, their characteristics, history, and their relationship to modern cattle.And all these questions come from a paper published recently in Nature which reports on the analysis of the genome of 38 Aurochs from bones stretching back over some 50,000 years from sites across Eurasia from the UK to Siberia. The team of geneticists from Trinity College and other universities have explained their findings in a Trinity College press release:
Physical Characteristics
- Size: Aurochs were significantly larger than modern cattle, with bulls standing up to 6 feet (1.8 meters) at the shoulder and weighing up to 1,500 pounds (700 kg) or more. Cows were generally smaller than bulls.
- Appearance: They had a muscular build with long legs and a slender body, which allowed them to move quickly. They possessed a distinctive hump over their shoulders.
- Color: Bulls were typically dark with a lighter "eel stripe" down the back, while cows were generally reddish-brown.
- Horns: Aurochs had large, forward-curving horns, which could reach up to 31 inches (80 cm) long. These horns were crucial for defense against predators and in fights between males.
Evolution and Extinction
- Evolution: The aurochs evolved around 2 million years ago in India and spread across Europe, Asia, and North Africa. Over time, isolated populations adapted to their environments.
- Extinction: The last recorded aurochs died in 1627 in Poland due to hunting, habitat loss, and diseases spread by domesticated cattle. Their extinction marked the end of the species, but they live on genetically through domestic cattle, which were bred from aurochs around 8,000 to 10,000 years ago.
Relationship to Domestic Cattle
- Domestication: Modern domestic cattle (Bos taurus and Bos indicus) were domesticated from different auroch populations. Early humans domesticated aurochs in two main areas:
- Bos taurus was domesticated in the Fertile Crescent (modern-day Middle East).
- Bos indicus (zebu cattle) was domesticated in the Indian subcontinent.
- Genetic Influence: Domestic cattle have inherited many traits from their auroch ancestors. Selective breeding by humans introduced variations in size, color, horn shape, and other physical traits to better suit agricultural needs.
- Behavior: Domestic cattle have been bred for docility and other traits that make them manageable for farming. Aurochs, on the other hand, were more aggressive and less tolerant of human presence.
Breeding Back Efforts
In recent years, there have been efforts to "breed back" cattle that resemble the aurochs. Breeding back does not resurrect the aurochs genetically but seeks to produce cattle that resemble aurochs in appearance and behavior.
- Heck Cattle: In the early 20th century, German zoologists Heinz and Lutz Heck attempted to recreate aurochs by selectively breeding European cattle breeds with certain aurochs-like features.
- TaurOs Project: Launched in 2008, this project uses selective breeding of various cattle breeds to produce animals that physically and behaviorally resemble aurochs, focusing on rewilding European landscapes.
Role in Ecosystems and Rewilding
Aurochs once played a critical role in their ecosystems by grazing on grasses, which helped maintain the balance of plant species and created habitats for other animals. In rewilding efforts, cattle resembling aurochs are introduced to landscapes where their grazing patterns help to maintain open grasslands and support biodiversity.
Cultural Significance
Aurochs appear in ancient art, mythology, and folklore across many cultures. They were revered as symbols of strength and vitality and often featured in prehistoric cave paintings, such as those in Lascaux, France, which date back over 17,000 years.
Summary
- Ancestors of Domestic Cattle: Aurochs are the wild progenitors of domestic cattle, with genetic links to both Bos taurus and Bos indicus.
- Distinctive Features: Large, muscular, and possessing large horns, aurochs were much larger than modern cattle.
- Rewilding and Conservation: Through efforts like the Heck Cattle and TaurOs Project, conservationists attempt to restore the ecological impact that aurochs once had on European landscapes.
- Legacy: Although extinct, the aurochs' genetic legacy continues in domestic cattle, and they remain an iconic symbol in history and conservation.
The story of the aurochs highlights the powerful connection between humans and wild animals, showcasing how our ancestors' choices shaped the landscapes and species we see today.
Ancient DNA brings to life history of the iconic aurochs
Geneticists from Trinity, together with an international team of researchers, have deciphered the prehistory of aurochs – the animals that were the focus of some of the most iconic early human art, and whose tale is intertwined with climate change and human culture.
The team analysed 38 genomes harvested from bones dating across 50 millennia and stretching from Siberia to Britain in this work.
The aurochs roamed in Europe, Asia and Africa for hundreds of thousands of years. Adorned as paintings on many a cave wall, their domestication to create cattle gave us a harnessed source of muscle, meat and milk. Such was the influence of this domestication that today their descendants make up a third of the world’s mammalian biomass.
We normally think of the European aurochs as one common form or type, but our analyses suggest there were three distinct auroch populations alone in Europe – a Western European, an Italian, and a Balkan. There was thus a greater diversity in the wild forms than we had ever imagined.
Dr Mikkel-Holger S. Sinding, co-author
Department of Biology
University of Copenhagen, Copenhagen, Denmark.
Intriguingly, climate change also wrote its signature in aurochs genomes in two ways:
First, European and north Asian genomes separated and diverged at the beginning of the last ice age, around 100,000 years ago, and did not seem to mix until the world warmed up again at its end.
And second, genome-estimated population sizes dropped in the glacial period, with a more pronounced hard time endured by European herds. These lost the most diversity when they retreated to separated refugia in southern parts of the continent before repopulating it again afterwards.
The most pronounced drop in genetic diversity occurs between the period when the aurochs of southwest Asia were domesticated in the north of the Fertile Crescent, just over 10,000 years ago, to give the first cattle.
Remarkably only a handful of maternal lineages (as seen via mitochondrial DNA which is handed down via mothers to their offspring) come through this process into the cattle gene pool.
Although Caesar exaggerated when he said it was like an elephant, the wild ox must have been a highly dangerous beast and this hints that its first capture and taming must have happened with only a very few animals. However, the narrow genetic base of the first cattle was augmented as they first travelled with their herders west, east and south. It is clear that there was early and pervasive mating with wild aurochs bulls, leaving a legacy of the four separate preglacial aurochs ancestries that persists among the domestic cattle of today.
Professor Dan Bradley, senior author
Smurfit Institute of Genetics
Trinity College Dublin, Dublin, Ireland.
Publication:
AbstractOne interesting finding is that the aurochs split and diversified during a glacial period when different populations were in different refugia, where they diversified genetically. This is reflected in the DNA inherited by domestic cattle and shows allopatric speciation in progress.
Now extinct, the aurochs (Bos primigenius) was a keystone species in prehistoric Eurasian and North African ecosystems, and the progenitor of cattle (Bos taurus), domesticates that have provided people with food and labour for millennia1. Here we analysed 38 ancient genomes and found 4 distinct population ancestries in the aurochs—European, Southwest Asian, North Asian and South Asian—each of which has dynamic trajectories that have responded to changes in climate and human influence. Similarly to Homo heidelbergensis, aurochsen first entered Europe around 650 thousand years ago2, but early populations left only trace ancestry, with both North Asian and European B. primigenius genomes coalescing during the most recent glaciation. North Asian and European populations then appear separated until mixing after the climate amelioration of the early Holocene. European aurochsen endured the more severe bottleneck during the Last Glacial Maximum, retreating to southern refugia before recolonizing from Iberia. Domestication involved the capture of a small number of individuals from the Southwest Asian aurochs population, followed by early and pervasive male-mediated admixture involving each ancestral strain of aurochs after domestic stocks dispersed beyond their cradle of origin.
Rossi, C., Sinding, MH.S., Mullin, V.E. et al.
The genomic natural history of the aurochs. Nature (2024). https://doi.org/10.1038/s41586-024-08112-6
© 2024 Springer Nature Ltd.
Reprinted under the terms of s60 of the Copyright, Designs and Patents Act 1988.
Another interesting finding is how the domesticated cattle and the wild aurochs continued to interbreed with domestic cattle, with auroch bulls mating with domestic cows, showing how diverging species can interbreed for a period until barriers to hybridization evolve.
All this paints a much more interesting picture of the origins of domestic cattle from wild ancestors than the childish one involving magic that creationists find easier to understand. It also poses the question for creationists - why didn't their putative designer design domestic cattle fit for purpose - docile and a high milk yield - that had to be bred into them through an extended period of selective breeding because their wild ancestors were too big and dangerous?
Refuting Creationism: Why Creationism Fails In Both Its Science And Its Theology
No comments:
Post a Comment
Obscene, threatening or obnoxious messages, preaching, abuse and spam will be removed, as will anything by known Internet trolls and stalkers, by known sock-puppet accounts and anything not connected with the post,
A claim made without evidence can be dismissed without evidence. Remember: your opinion is not an established fact unless corroborated.