Showing posts with label Physics. Show all posts
Showing posts with label Physics. Show all posts

Sunday, 3 November 2024

Refuting Creationism - First Steps to Abiogenesis


Diagram of the atmospheric evolution of Earth's ancient atmosphere estimated by this study
© Yoshida et al.
Research News - How Life Began on Earth: Modeling Earth's Ancient Atmosphere | Tohoku University Global Site

The fact that living organisms arose on Earth from inorganic sources rather than being made of nothing by magic, is an indisputable fact because there are living organisms on Earth and the chemicals they are composed of all exist on the planet in inorganic minerals and gases. 'Life' contains nothing that 'non-life' doesn't contain.

This much we know, but what we don't yet know and can probably never know with certainty, is precisely how and where that happen. In fact, we don't even know whether it did all start in the same place at the same time because the reason there are two different prokaryote cells - bacteria and archaea - could be because life arose on Earth not once but twice, by two different processes in two different places at two different times.

What we have though is lots of working hypotheses in the process of being validated.

What role would Earth's atmosphere have played in abiogenesis? Earth's early atmosphere was crucial in creating the right conditions for abiogenesis—the process by which life originated from non-living matter. While the exact composition of Earth’s primordial atmosphere is still debated, its unique conditions likely contributed in several essential ways:
  1. Provision of Basic Building Blocks
    • Earth’s early atmosphere likely contained simple molecules like methane (CH₄), ammonia (NH₃), hydrogen (H₂), carbon dioxide (CO₂), nitrogen (N₂), and water vapor (H₂O). These molecules are rich in carbon, nitrogen, oxygen, and hydrogen—elements that are vital for organic compounds and, ultimately, for life.
    • When exposed to energy sources like ultraviolet (UV) radiation from the Sun or electrical discharges from lightning, these molecules could recombine into more complex organic molecules, such as amino acids and nucleotides, which are the building blocks of proteins and nucleic acids, respectively.

  2. Facilitation of Prebiotic Chemistry
    • Experiments like the famous Miller-Urey experiment in 1953 showed that simple gases (methane, ammonia, hydrogen, and water vapor) in an atmosphere subjected to electrical sparks could produce amino acids. This suggests that Earth’s early atmosphere could have been instrumental in initiating chemical reactions that synthesized complex organic molecules.
    • Without a protective ozone layer, the early atmosphere allowed substantial UV radiation to penetrate the Earth’s surface, providing the energy necessary to drive these prebiotic reactions.

  3. Supporting a Reducing Environment
    • The presence of reducing gases (such as methane and ammonia) would favor the formation of organic molecules because such conditions prevent the oxidation (and hence destruction) of organic compounds. Oxygen is highly reactive and can break down organic molecules, so the absence of free oxygen in the early atmosphere was likely a key factor that allowed these molecules to accumulate and react.
    • This reducing environment might have helped organic compounds to survive long enough to form stable, self-replicating systems.

  4. Encouraging Geochemical Interactions
    • The interaction between the early atmosphere and the oceans, along with geothermal activity like volcanic eruptions and hydrothermal vents, provided a diverse range of chemical environments. In particular, hydrothermal vents may have supplied essential minerals and additional energy sources, further driving complex chemical reactions that are believed to be important in the formation of life.
    • The cycling of materials between the atmosphere and oceans would have contributed to creating localized "hotspots" for prebiotic reactions.

  5. Protection and Concentration Mechanisms
    • The atmosphere also played a protective role by preventing the immediate dissipation of important compounds into space. It allowed the concentration of molecules and gases at Earth’s surface, increasing the chances of interactions among the essential precursors to life.
    • Early atmospheres may have helped regulate surface temperatures, preventing extreme fluctuations that would have been hostile to complex chemistry.

  6. Encouraging Self-Organization and Membrane Formation
    • Interactions in the early atmosphere could have contributed to the formation of lipid molecules that could aggregate to form primitive cell-like structures or vesicles. These structures would eventually help in containing and protecting reactions necessary for early metabolic pathways.
    • These early "proto-cells" or vesicles would have been necessary to create a boundary for molecular interactions, which is a critical step toward the organization needed for cellular life.

In summary, Earth’s early atmosphere provided a chemically conducive, energetically rich environment that fostered the synthesis and concentration of organic molecules necessary for abiogenesis. This atmosphere also shielded these nascent molecules, allowing them to organize and evolve toward increasingly complex systems, eventually leading to the first living organisms.
One of which is the precise details of the atmosphere on the Early Earth, which is important because it would have had a major impact on the rest of the environment in which life arose. To gain a better understanding of that, a team from Tohoku University, Tokyo University and Hokkaido University, Japan, led by Tatsuya Yoshida have succeeded in modelling that atmosphere, as explained in a Tohoku University press release and published in the journal Astrobiology:
How Life Began on Earth: Modeling Earth's Ancient Atmosphere
The key to unlocking the secrets of distant planets starts right here on Earth. Researchers at Tohoku University, the University of Tokyo, and Hokkaido University have developed a model considering various atmospheric chemical reactions to estimate how the atmosphere - and the first signs of life - evolved on Earth.

Ancient Earth was nothing like our current home. It was a much more hostile place; rich in metallic iron with an atmosphere containing hydrogen and methane.

Shungo Koyama, co-author
Graduate School of Science
Tohoku University, Sendai, Japan.
These molecules contain an important clue to how life was initially formed. When exposed to solar ultraviolet (UV) radiation, they undergo a chemical reaction that produces organics (also known as the "building blocks of life"). Part of these organics were precursors to essential biomolecules, such as amino acids and nucleic acids. However, understanding the role of UV radiation is difficult. Firstly, this type of atmosphere is unstable and likely underwent rapid changes due to atmospheric chemical reactions. Secondly, when UV radiation efficiently breaks down water vapour in the atmosphere and forms oxidative molecules, the precise branching ratio and timescale has not been determined. In order to address these issues, a 1D photochemical model was created to make accurate predictions about what the atmosphere was like on Earth long ago.

The calculation reveals that most hydrogen was lost to space and that hydrocarbons like acetylene (produced from methane) shielded UV radiation. This inhibition of UV radiation significantly reduced the breakdown of water vapour and subsequent oxidation of methane, thus enhancing the production of organics. If the initial amount of methane was equivalent to that of the amount of carbon found on the present-day Earth's surface, organic layers several hundred metres thick could have formed.

There may have been an accumulation of organics that created what was like an enriched soup of important building blocks. That could have been the source from which living things first emerged on Earth.

Tatsuya Yoshida, lead author
Graduate School of Science
Tohoku University, Sendai, Japan.

The model suggests that the atmosphere on ancient Earth was strikingly similar to what we see on current day neighbouring planets: Venus and Mars. However, despite their proximity, Earth evolved into a completely different environment. Researchers are trying to understand what makes Earth so special. As such, this model allows us to deepen our understanding of whether atmospheric evolution and the origin of life on Earth are unique or share common patterns with other planetary systems.

These findings were published in the journal Astrobiology on October 22, 2024.

Publication Details:
Tatsuya Yoshida, Shungo Koyama, Yuki Nakamura, Naoki Terada and Kiyoshi Kuramoto
Self-Shielding Enhanced Organics Synthesis in an Early Reduced Earth's Atmosphere Astrobiology DOI: 10.1089/ast.2024.0048
Abstract
Earth is expected to have acquired a reduced proto-atmosphere enriched in H2 and CH4 through the accretion of building blocks that contain metallic Fe and/or the gravitational trapping of surrounding nebula gas. Such an early, wet, reduced atmosphere that covers a proto-ocean would then ultimately evolve toward oxidized chemical compositions through photochemical processes that involve reactions with H2O-derived oxidant radicals and the selective escape of hydrogen to space. During this time, atmospheric CH4 could be photochemically reprocessed to generate not only C-bearing oxides but also organics. However, the branching ratio between organic matter formation and oxidation remains unknown despite its significance on the abiotic chemical evolution of early Earth. Here, we show via numerical analyses that UV absorptions by gaseous hydrocarbons such as C2H2 and C3H4 significantly suppress H2O photolysis and subsequent CH4 oxidation during the photochemical evolution of a wet proto-atmosphere enriched in H2 and CH4. As a result, nearly half of the initial CH4 converted to heavier organics along with the deposition of prebiotically essential molecules such as HCN and H2CO on the surface of a primordial ocean for a geological timescale order of 10–100 Myr. Our results suggest that the accumulation of organics and prebiotically important molecules in the proto-ocean could produce a soup enriched in various organics, which might have eventually led to the emergence of living organisms.

So, by the action if UV radiation from the sun on the inorganic molecules in Earth's early atmosphere for a period of some 10-100 million years, the oceans could have accumulated the basic building blocks for organic organisms to get started, and all th result of chemistry and physics with no magic gods involved at any point.

And, as usual with scientific discoveries, the truth is shown to have little resemblance to the origin myths the parochial Bronze Age pastoralists made up to fill the yawning chasm in their knowledge and understanding of the world around them, with their belief that Earth had only existed for a few thousand years, so were blissfully ignorant of the 99.9975% of its history that occurred before then.

Sunday, 27 October 2024

Refuting Creationism - Producing 'Life' in The Laboratory


Biological systems serve as examples for the simplified artificial systems used to create synthetic cells.
Beeld Willy Arisky via Pexels
Creating a simplified form of life | News articles | University of Groningen

One of the more amusing questions creationists keep asking is how did 'life' come from non-life? Or more dogmatically, they claim 'life' from 'non-life' is impossible.

They then scuttle off to hide when asked to define, 'life' and state how it can be measured to assess whether something like a rock, a bacterium or a bowl of chicken soup has any life in it. It causes the same tactic of avoidance when asked to explain how dead food becomes living tissues during the process of digestion and metabolism, if that's impossible?

The problem is creationists have been brainwashed into thinking that 'life' is something magical; some special force that turns inorganic chemicals into 'living' structures. In fact, 'life' is a process involving atoms and molecules doing their chemistry according to the fundamental laws of chemistry and physics. And the function of the process is to manage entropy - the tendency of a system to become disordered - using the energy in nutrients.

And rather than 'life' being something magical which is magically inserted into a developing embryo at some unspecified day of its development from a zygote to a free-living organism, it's actually a continuation of the life processes of the egg and sperm that united to form the zygote. There never is a 'new life', just a continuation of the parent's entropy management process.

Tuesday, 8 October 2024

Silly Bible - More Evidence Of The Laughable Naivety Of The Bible's Primitive Authors



This image shows the motion of cold gas in the REBELS-25 galaxy as seen with the Atacama Large Millimeter/submillimeter Array (ALMA). Blue colouring indicates movement towards Earth and red indicates movement away from Earth, with a darker shade representing faster movement. In this case, the red-blue divide of the image shows clearly that the object is rotating, making REBELS-25 the most distant rotating disc galaxy ever discovered.
Credit: ALMA (ESO/NAOJ/NRAO)/L. Rowland et al.
Space oddity: Most distant rotating disc galaxy found | ESO

It looks like it's the turn of cosmologists to casually refute creationism by revealing the facts - normally the privilege of biologists and archaeologists who do so with almost every science paper they publish. But of course it would also be difficult for cosmologists to reveal anything about the cosmos that doesn't make those who described it as consisting of a small flat planet with a dome over it, look like anything other than ignorant simpletons who can't be taken seriously.

But of course, they were probably expert at being cattle-herding pastoralists, quite familiar with their few square miles of the Bronze Age Middle East; they just didn't know anything about science or history, so made up tales to fill the gap in their understanding.

Here for example is another cosmology paper showing just how old, immense and awe-inspiring the real Universe is, by reporting the discovery of a stable, rotating disc galaxy, rather like our own Milky Way galaxy, but from just 700 million years after the Big Bang. As such, REBEL-25 is the most distant rotating disc galaxy yet discovered. The discovery was made by an international team of astronomers led by cosmologists from Leiden University, The Netherlands, using data from the European Southern Observatory, Chile.

They have just published their findings in Monthly Notices of the Astronomical Society and announced it in a press release from the European Southern Observatory:

Silly Bible - How The Description of the Universe in Genesis was Laugably Naïve



Winds of change: James Webb Space Telescope reveals elusive details in young star systems | University of Arizona News
I keep returning to the contrast between how the universe is described in Genesis and how it really is as described by science because it illustrates better than almost anything else in the Bible, the naivety and sheer ignorance of the authors. A creator god who wanted us to understand the magnificence of its creation would surely have done a better job of explaining it than to have described it as a small flat planet with a dome over it to keep the water above the sky out, with the sun, moon and stars as lights stuck to the dome.

This description is so far removed from reality that none of it can plausibly be described as allegorical or metaphorical, or even a simplistic description intended to inform simple, uneducated people incapable of understanding anything more complicated. It is simply and laughably wrong; but exactly what parochial pastoralists might think from their limited perspective.

And these same parochial, naïve people came up with the notion of gods to explain the world around them whose working were so mysterious as to look like magic - and magic requires a magician. Where better to locate that magician? Above the dome over the Earth, obviously.

And so religions were built on the best guesses of people who knew no better; people whose best guess was that the Universe consisted of a small flat planet with a dome over it to keep the water above the sky out; people who saw no contradiction in describing the creation of light before the creation of the source of light, or the creation of green plants before the sun!

But how could they, with no technology more complicated than a potter's wheel and the visual acuity of the human eye, possibly know what was really going on as they looked up at the 'little lights stuck to the dome'? How could they possibly have been aware that this Earth is in orbit round the sun, that the sun is but one of half a trillion suns in one of half a trillion galaxies, all existing in a vast, expanding universe in which more than 3000 new stars are being born every second, most of them with an accretion disc from which planets will eventually coalesce?

Had they done so, and had they told us about it, then, and only then, would the notion that a creator god was inspiring them to explain the magnificence of its creation be even a plausible explanation for how they knew that stuff. As it is, all we are left to explain is why they were so ignorant of reality that they needed to invent stories to fill the gaps in their understanding, and of course, the gods they created exactly fitted those gaps, just as todays gods are precisely tailored to fill the gaps in the understanding of ignorant people.

So, how do we know they got things so badly wrong?

Wednesday, 2 October 2024

Refuting Creationism - If We Discovered The Bible Today We Could Date It's Authorship By The Scientific Illiteracy In It



XRISM has shown that the accretion disk surrounding a black hole in an active galactic nucleus is warped, confirming earlier hypotheses reflected in this artist’s conception from 2015.

Image credit: International Center for Radio Astronomy Research
First data from XRISM space mission provides new perspective on supermassive black holes | University of Michigan News

I've often remarked on how the stark difference between their laughably childish description of the Universe in the Bible and the reality science is revealing, illustrates the scientific illiteracy of its parochial authors, and so gives the lie to claims that it was written or inspired by a creator god.

They were writing with the knowledge and understanding of Bronze Age pastoralists - which is hardly surprising, since that's exactly what they were. They only knew of the small area around the Canaanite Hills, so nothing that was more than a day or two's walk for them was included, which is why it seemed to them like a small flat planet with a dome over it, and fixed to the dome were the sun, moon and stars; stars being mere small points of light and only those that were visible to the naked eye.

So, just imagine what they would have made of the information if some time traveler from today went back and told them about black holes and the centre of a galaxy 120,000 light years across and containing a billion suns with planets orbiting them! How could they have comprehended the idea of mass bending space-time or something smaller than a grain of sand weighing the same as a million suns?

What would they have made of distances so great that it takes light 120,000 years to travel its length? To them, light was instantaneous; it mattered not whether it came from the sun or the campfire, and the sun was merely a lamp hanging from the dome over the earth. What on Earth was this nonsense about the sun being really big and Earth going round it, things weighing millions of times more than the sun or light taking more time than they thought there had been to travel from one place to another?

They knew nothing of laws of motion and how forces make things move, so they had no concept of gravity. They walked on Earth because they didn't float above it, and they couldn't fly. Only gods and supernatural beings could travel up and down at will. So, what on Earth would mass causing gravity and gravity being an attractive force mean?

Black holes would have been simply beyond their comprehension and outside their experience of the world.

So, of course, they could have included nothing of any of this stuff in the stories they invented to explain things they didn't understand. Had they done so, we might have had some cause to think something must have told them. As it was, they wrote tales that illustrated their scientific illiteracy because they had no option but to do so. They were scientifically illiterate by today's standards.

Wednesday, 28 August 2024

Refuting Creationism - The Fossil Record Shows Climate Change - 59-51 Million Years Before 'Creation Week'



What microscopic fossilized shells tell us about ancient climate change – @theU

The bad news for creationists continues unabated as science discovers more facts, as we would expect of a counter-factual superstition.

This time it's news that new research led by University of Utah geoscientists has shown how there is a record of climate change in the fossil record in the form of traces of boron isotopes in the fossilised shells of microscopic foraminifera.

The record, 59-51 million years before creationists think Earth was created, is just another record of events in that 99.9975% of Earth's history that creationists try to shoe-horn into 10,000 to make it seem like their childish creation myth has some merit.

The record of change itself depends not on radioactive decay rates but on the ratios of stable isotopes of boron that get incorporated in the shells of microscopic foraminifera during their growth and then remain locked up as their bodies fossilise in marine sediment.

Dating of this marine sediment is done using several strands of evidence, one of which is U-Pb dating of zircon crystals, and all of which converge on the same dates (see the AI panel on the right).
What changes is the ratio of 11B (δ11B) incorporated in the shells of foraminifera during their lifetime, and this is related to the pH of the seawater. pH of sea water is in turn determined by the level of atmospheric CO2 - the higher the level of CO2, the lower the pH due to dissolved carbonic acid H3CO4.

Tuesday, 27 August 2024

Creationism Refuted - The 'Fine-Tuned Universe' Fallacy - Or How Creationists Have Been Fooled



The 'Pillars of Creation'.
The 'fine-tuned Universe' argument appeals particularly to those who understand neither physics nor probability and for whom the argument from ignorant incredulity and the false dichotomy fallacies are compelling, partly due to parochial ignorance in assuming that the locally popular god is the only entity capable of creating a universe, and that nothing else, supernatural or otherwise is capable of it.

The most compelling argument against it is the anthropic principle. This means the fact that we are discussing it means we must exist in a universe in which intelligent life is certain.

There is also the subtle blasphemy that most creationists seem not to have thought of in that the argument assumes their putative creator god could only create life within fine-tuned' parameters, so is itself constrained by the same parameters. This denies it's omnipotence and implies the existence of a higher power which set these constraints.

Incidentally, although it's not strictly speaking an argument against the 'fine-tuned' fallacy, note that one of the fundamental forces is the weak nuclear force which governs the rate of radioactive decay. Creationists try to dismiss geochronology based on radiometric dating, claiming, with no evidence whatsoever, that the decay rates used to be much faster, so millions of years can look like 10,000 years or less. This would mean the weak nuclear force was even weaker, by several orders of magnitude.

Probability of dealing a specific bridge hand from a 52-card pack:
\[ P = \frac{1}{\binom{52}{13} \times \binom{39}{13} \times \binom{26}{13} \times \binom{13}{13}} \]
Which can be simplified to:

\( P = \frac{1}{\frac{52!}{(13!)^4}} \) or \( P \approx 1.86 \times 10^{-29} \)

Creationists will look at a tiny probability like this and conclude that dealing four bridge hands from a 52-card pack is so improbable as to be impossible, therefore a god must have dealt the cards, and then wave that 'fact' as 'proof' of the locally popular god.
If that were true, as the following dialogue shows, the formation of anything other than hydrogen would not be possible, so stars (which depend on the nuclear fusion of hydrogen to form helium to prevent them collapsing under their own gravity) could not exist, nor could the heavier elements of which living organisms are composed.

Creationists are, probably because they lack the understanding to realise it, and their 'scientists' aren't going to tell them, arguing two mutually contradictory claims simultaneously. They can't both be right, but they can both be wrong.

Of course, given their willingness to try to mislead gullible people into joining their cult, we can never be sure that creationists who try to get away with this fallacy aren't aware they are using a false argument in order to deceive.

The following is a dialogue with ChatGPT4.0, which not only debunks the argument, but shows how it's actually a blasphemy because it argues more strongly against a supreme, omnipotent creator god than for one:

Sunday, 25 August 2024

Refuting Creationism - The Universe Is Not Fine-Tuned for Life. It is Fine-Tuned For Black Holes and Destruction


Watch a star get destroyed by a supermassive black hole in the first simulation of its kind

Creationist have been fooled by their cult to believe that the Universe is 'fine-tuned' for life and that this 'fine-tuning' is proof of their particular god and its particular holy book.

This is a blatant false dichotomy fallacy; even if it could be proved to be true by showing that the various (and usually ill-defined) parameters could have other values it does not follow that a randomly designated god is responsible for 'tuning' them.

It's also a blasphemy, if creationists did but realise it, because it assumes their supposedly omnipotent god is itself constrained by the fundamental laws of chemistry and physics and could only work to create life within very narrow constraints - which implies a higher power to set that constraint.

How many black holes are there in the known Universe? Estimating the exact number of black holes in the known Universe is challenging, but astronomers have made some educated guesses based on our current understanding.

Stellar-Mass Black Holes
Stellar-mass black holes, which form from the collapse of massive stars, are the most common type. Based on the number of stars in the Universe and the fraction of those stars that are massive enough to form black holes, it is estimated that there are around 100 million to 1 billion stellar-mass black holes in the Milky Way galaxy alone. Given that the Milky Way is just one of about 2 trillion galaxies in the observable Universe, the number of stellar-mass black holes across the Universe could be in the range of \({10^{18}}\) to \({10^{19}}\) (a billion trillion to 10 billion trillion).

Supermassive Black Holes
Supermassive black holes, which exist at the centers of galaxies, are much rarer. Almost every galaxy with a significant size is thought to have a supermassive black hole at its center. This suggests there could be around 2 trillion supermassive black holes in the observable Universe, one for each galaxy.

Primordial Black Holes
There is also the theoretical possibility of primordial black holes, which might have formed in the early Universe. These could range in mass from very small to large and could number in the vast quantities, though their existence has not been confirmed.

Total Estimate
In total, combining these different types, the number of black holes in the observable Universe could be as high as \({10^{19}}\) or more. This estimate is still very rough, as it depends on many factors, including the formation rates of black holes, the life cycle of stars, and the evolution of galaxies.
But it is nonsensical for another reason: life is not the most abundant manifestation of the laws of physics in the Universe; that honour goes more deservedly to black holes, of which there are estimated \(\small {10^{19}}\) in the observable Universe - far more than there are living organisms - and black holes don't require special conditions in which to exist, other than a Universe with enough mass.

And black holes, far from showing that the Universe is a place designed to be friendly to life (which only the most parochial and naive simpletons could imagine, given that most of it above a few thousand feet of the surface of Earth is hostile to most forms of life and only a fraction of the surface is hospitable without special adaption or complex technology), are about the most destructive thing in the Universe, reducing everything that comes within their event horizon to energy which can only escape in the form of Hawking radiation.

So, if anything, the Universe appears to be 'fine-tuned' for self-destruction and the eventual extermination of life. Not exactly what the creation cults want their dupes to believe.

This theory has the advantage of a possible explanation for the appearance of design just as living organisms have, in the form of the Theory of Evolution. Black holes are believed to contain the quantum conditions for universes to spontaneously arise, so, if there were a mechanism for passing information through a black hole from the parent universe to a descendant one, natural selection should mean universes get better at making black holes.

How black holes swallow up entire suns, compete with any orbiting planets is the subject of a recent paper in Astrophysical Journal Letters which show computer generated simulations of the event. One notable observation if the 'spaghettification' effect where, from the point of view of a distant observer, an object falling into a black hole becomes drawn out into a thin string, like toothpaste out of a tube. This is caused by the dilation of space and time due to the increasing gravity as the black hole is approached and is an effect of General Relativity.

One of the authors of this paper, Professor Daniel Price of Monash University, Australia, has published an article about the team's findings in The Conversation. His article is reprinted here under a Creative Commons license, reformatted for stylistic consistency:



Watch a star get destroyed by a supermassive black hole in the first simulation of its kind

Price et al. (2024)
Daniel Price, Monash University

Giant black holes in the centres of galaxies like our own Milky Way are known to occasionally munch on nearby stars.

This leads to a dramatic and complex process as the star plunging towards the supermassive black hole is spaghettified and torn to shreds. The resulting fireworks are known as a tidal disruption event.

In a new study published today in the Astrophysical Journal Letters, we have produced the most detailed simulations to date of how this process evolves over the span of a year.

A black hole tearing apart a sun

American astronomer Jack G. Hills and British astronomer Martin Rees first theorised about tidal disruption events in the 1970s and 80s. Rees’s theory predicted that half of the debris from the star would remain bound to the black hole, colliding with itself to form a hot, luminous swirl of matter known as an accretion disc. The disc would be so hot, it should radiate a copious amount of X-rays.

A cool toned white glowing ball on a black background.
An artist’s impression of a moderately warm star – not at all what a black hole with a hot accretion disc would be like.

But to everyone’s surprise, most of the more than 100 candidate tidal disruption events discovered to date have been found to glow mainly at visible wavelengths, not X-rays. The observed temperatures in the debris are a mere 10,000 degrees Celsius. That’s like the surface of a moderately warm star, not the millions of degrees expected from hot gas around a supermassive black hole.

Even weirder is the inferred size of the glowing material around the black hole: several times larger than our Solar System and expanding rapidly away from the black hole at a few percent of the speed of light.

Given that even a million-solar-mass black hole is just a bit bigger than our Sun, the huge size of the glowing ball of material inferred from observations was a total surprise.

While astrophysicists have speculated the black hole must be somehow smothered by material during the disruption to explain the lack of X-ray emissions, to date nobody had been able to show how this actually occurs. This is where our simulations come in.

A slurp and a burp

Black holes are messy eaters – not unlike a five-year-old with a bowl of spaghetti. A star starts out as a compact body but gets spaghettified: stretched to a long, thin strand by the extreme tides of the black hole.

As half of the matter from the now-shredded star gets slurped towards the black hole, only 1% of it is actually swallowed. The rest ends up being blown away from the black hole in a sort of cosmic “burp”.

Simulating tidal disruption events with a computer is hard. Newton’s laws of gravity don’t work near a supermassive black hole, so one has to include all the weird and wonderful effects from Einstein’s general theory of relativity.

But hard work is what PhD students are for. Our recent graduate, David Liptai, developed a new do-it-Einstein’s-way simulation method which enabled the team to experiment by throwing unsuspecting stars in the general direction of the nearest black hole. You can even do it yourself.

Spaghettification in action, a close up of the half of the star that returns to the black hole.
The resultant simulations, seen in the videos here, are the first to show tidal disruption events all the way from the slurp to the burp.

They follow the spaghettification of the star through to when the debris falls back on the black hole, then a close approach that turns the stream into something like a wriggling garden hose. The simulation lasts for more than a year after the initial plunge.

It took more than a year to run on one of the most powerful supercomputers in Australia. The zoomed-out version goes like this:

Zoomed-out view, showing the debris from a star that mostly doesn’t go down the black hole and instead gets blown away in an expanding outflow.
What did we discover?

To our great surprise, we found that the 1% of material that does drop to the black hole generates so much heat, it powers an extremely powerful and nearly spherical outflow. (A bit like that time you ate too much curry, and for much the same reason.)

The black hole simply can’t swallow all that much, so what it can’t swallow smothers the central engine and gets steadily flung away.

When observed like they would be by our telescopes, the simulations explain a lot. Turns out previous researchers were right about the smothering. It looks like this:

The same spaghettification as seen in the other movies, but as would be seen with an optical telescope [if we had a good-enough one]. It looks like a boiling bubble. We’ve called it the “Eddington envelope”.
The new simulations reveal why tidal disruption events really do look like a solar-system-sized star expanding at a few percent of the speed of light, powered by a black hole inside. In fact, one could even call it a “black hole sun”. The Conversation
Daniel Price, Professor of Astrophysics, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Published by The Conversation.
Open access. (CC BY 4.0)
For the technically-minded, more detail is given in the paper in Astrophysical Journal Letters:

Any creationists wishing to refute this paper will need to refute the details given here:
Abstract
Stars falling too close to massive black holes in the centres of galaxies can be torn apart by the strong tidal forces. Simulating the subsequent feeding of the black hole with disrupted material has proved challenging because of the range of timescales involved. Here we report a set of simulations that capture the relativistic disruption of the star, followed by one year of evolution of the returning debris stream. These reveal the formation of an expanding asymmetric bubble of material extending to hundreds of astronomical units — an outflowing Eddington envelope with an optically thick inner region. Such outflows have been hypothesised as the reprocessing layer needed to explain optical/UV emission in tidal disruption events, but never produced self-consistently in a simulation. Our model broadly matches the observed light curves with low temperatures, faint luminosities, and line widths of \(\small {10,000}–{20,000}\;\text{km/s}\).

1 Introduction
In the classical picture of tidal disruption events (TDEs), the debris from the tidal disruption of a star on a parabolic orbit by a supermassive black hole (SMBH) rapidly circularises to form an accretion disc via relativistic apsidal precession (Rees, 1988). The predicted mass return rate of debris (Phinney, 1989) is \(\small \propto t^{5/3}\) and the light curve is assumed to be powered by accretion and to follow the same decay.

This picture alone does not predict several properties of observed TDEs, mainly related to their puzzling optical emission (van Velzen et al., 2011; van Velzen, 2018; van Velzen et al., 2021). These properties include: i) low peak bolometric luminosities (Chornock et al., 2014) of \(\small \sim {10^{44}}\;\text{ergs/s}\) \(\small \sim\) 1 per cent of the value expected from radiatively efficient accretion (Svirski et al., 2017); ii) low temperatures, more consistent with the photosphere of a B-type star than with that of an accretion disc at a few tens of gravitational radii (\(\small R_{g}\equiv GM_{\mathrm{BH}}/c^{2}\)) (Gezari et al., 2012; Miller, 2015), and consequently large emission radii, \(\small \sim {10}-{100}\) au for a \(\small 10^{6}M_{\odot}\) black hole (Guillochon et al., 2014.1; Metzger & Stone, 2016); and iii) spectral line widths implying gas velocities of \(\small \sim {10^4}\;\text{km/s}\), much lower than expected from an accretion disc (Arcavi et al., 2014.2; Leloudas et al., 2019; Nicholl et al., 2019.1).

As a consequence, numerous authors have proposed alternative mechanisms for powering the TDE lightcurve, via either shocks from tidal stream collisions during disc formation (Lodato, 2012.1; Piran et al., 2015.1; Svirski et al., 2017; Ryu et al., 2023; Huang et al., 2023.1), or the reprocessing of photons through large scale optically thick layers, referred to as Eddington envelopes (Loeb & Ulmer, 1997), super-Eddington outflows (Strubbe & Quataert, 2009), quasi-static or cooling TDE envelopes (Roth et al., 2016.1; Coughlin & Begelman, 2014.3; Metzger, 2022) or mass-loaded outflows (Jiang et al., 2016.2; Metzger & Stone, 2016). Recent spectro-polarimetric observations suggest reprocessing in an outflowing, quasi-spherical envelope (Patra et al., 2022.1).

The wider problem is that few calculations exist that follow the debris from disruption to fallback for a parabolic orbit with the correct mass ratio. The challenge is to evolve a main-sequence star on a parabolic orbit around a SMBH from disruption and to follow the subsequent accretion of material (Metzger & Stone, 2016). The dynamic range involved when a \(\small 1M_{\odot}\) star on a parabolic orbit is tidally disrupted by a \(\small {10^6}_{\odot}\) SMBH is greater than four orders of magnitude: the tidal disruption radius is 50 times the gravitational radius, where general relativistic effects are important, while the apoapsis of even the most bound material is another factor of 200 further away. This challenge led previous studies to consider a variety of simplifications (Stone et al., 2019.2): i) reducing the mass ratio between the star and the black hole by considering intermediate mass black holes (Ramirez-Ruiz & Rosswog, 2009.1; Guillochon et al., 2014.1); ii) using a Newtonian gravitational potential (Evans & Kochanek, 1989.1; Rosswog et al., 2008; Lodato et al., 2009.2; Guillochon et al., 2009.3; Golightly et al., 2019.3), pseudo-Newtonian (Hayasaki et al., 2013; Bonnerot et al., 2016.3) or post-Newtonian approximations (Ayal et al., 2000; Hayasaki et al., 2016.4); iii) simulating only the first passage of the star (Evans & Kochanek, 1989.1; Laguna et al., 1993; Khokhlov et al., 1993.1; Frolov et al., 1994; Diener et al., 1997.1; Kobayashi et al., 2004; Guillochon et al., 2009.3; Guillochon & Ramirez-Ruiz, 2013.1; Tejeda et al., 2017.1; Gafton & Rosswog, 2019.4; Goicovic et al., 2019.5); and iv) assuming stars initially on bound, highly eccentric orbits instead of parabolic orbits (Sadowski et al., 2016.5; Hayasaki et al., 2013, 2016.4; Bonnerot et al., 2016.3; Liptai et al., 2019.6; Hu et al., 2024).

These studies have, nevertheless, provided useful insights into the details of the tidal disruption process. In particular, it has been shown that the distribution of orbital energies of the debris following the initial disruption is roughly consistent with \(\small dM/dE\) = const, consistent with the analytic prediction of a \(\small \propto t^{5/3}\) mass fallback rate, although the details can depend on many factors such as stellar spin, stellar composition, penetration factor and black hole spin (Lodato et al., 2009.2; Kesden, 2012.2; Guillochon & Ramirez-Ruiz, 2013.1; Golightly et al., 2019.3; Sacchi & Lodato, 2019.7). The importance of general relativistic effects in circularising debris has also been demonstrated. The self-intersection of the debris stream, which efficiently dissipates large amounts of orbital energy, is made possible by relativistic apsidal precession (Hayasaki et al., 2016.4; Bonnerot et al., 2016.3; Liptai et al., 2019.6; Calderón et al., 2024.1). But until recently debris circularisation has only been shown for stars on bound orbits, with correspondingly small apoapsis distances and often deep penetration factors (we define the penetration factor as \(\small \beta\equiv R_{\mathrm{t}}/R_{\mathrm{p}}\), where \(\small R_{\mathrm{t}}=R_{*}(M_{\mathrm{BH}}/M_{*})^{1/3}\) is the tidal radius and \(\small R_{\mathrm{p}}\) is the pericenter distance).

Recent works have shown that circularisation and initiation of accretion is possible in the parabolic case, by a combination of energy dissipation in the ‘nozzle shock’ that occurs on second pericenter passage (Steinberg & Stone 2024.2; but see Bonnerot & Lu 2022.2 and Appendix E for convergence studies of the nozzle shock) and/or relativistic precession leading to stream collisions (Andalman et al., 2022.3). In this paper, we present a set of simulations that self-consistently evolve a one solar mass polytropic star on a parabolic orbit around a \(\small {10^6}\) solar mass black hole from the star’s disruption to circularization of the returning debris and then accretion. We follow the debris evolution for one year post-disruption, enabling us to approximately compute synthetic light curves which appear to match the key features of observations.
Figure 1:One year in the life of a tidal disruption event. We show shapshots of column density in the simulation of a \(\small 1M_{\odot}\) star on a parabolic orbit with \(\small \beta = {1}\), disrupted by a \(\small {10^6} M_{\odot}\) black hole, using \(\small 4\times 10^{6}\) SPH particles in the Schwarzschild metric. Main panel shows the large scale outflows after 365 days projected in the \(\small {x}-{y}\) plane with log scale. Inset panels show the stream evolution on small scales (\(\small{100}\times {100}\) au), showing snapshots of column density projected in the \(\small {x}-{y}\) plane on a linear scale from \(\small {0}\;\text{to}\; {1500}\;{g/cm^2}\) (colours are allowed to saturate). Animated versions of this figure are available in the online article. Data and scripts used to create the figure are available on Zenodo:https://doi.org/10.5281/zenodo.11438154 (catalog doi:10.5281/zenodo.11438154)
The Universe is far from the ideal environment for life to thrive in - known life only exists as an encrustation on or near the surface of a single planet. Instead, it is a violent and unstable chaos of competing forces with an estimated \(\small {10^{19}}\) supper-dense, massive black holes, which far exceeds the number of life forms in the known Universe, drawing to inevitable annihilation any body that strays too close.

It requires parochial ignorance of the first order to imagine that the entire Universe is designed for life. It is far easier to make a case for it being designed for black holes, although that, as with the 'designed for life' case, case would require a priori evidence of the existence of a creative entity in the form of an explanation of its origins and definitive evidence of it ever being recorded as creating anything. And by recorded, I don't mean written in the mythology of Bronze Age pastoralists who thought the Universe was a small flat place with a dome over it and containing nothing that was unknown within a day or two's walk of the Canaanite Hills where they grazed their goats, and later decreed to be literal history by people with a vested interest in people believing the myths.
Advertisement

What Makes You So Special? From The Big Bang To You

How did you come to be here, now? This books takes you from the Big Bang to the evolution of modern humans and the history of human cultures, showing that science is an adventure of discovery and a source of limitless wonder, giving us richer and more rewarding appreciation of the phenomenal privilege of merely being alive and able to begin to understand it all.

Available in Hardcover, Paperback or ebook for Kindle

Advertisement

Ten Reasons To Lose Faith: And Why You Are Better Off Without It

This book explains why faith is a fallacy and serves no useful purpose other than providing an excuse for pretending to know things that are unknown. It also explains how losing faith liberates former sufferers from fear, delusion and the control of others, freeing them to see the world in a different light, to recognise the injustices that religions cause and to accept people for who they are, not which group they happened to be born in. A society based on atheist, Humanist principles would be a less divided, more inclusive, more peaceful society and one more appreciative of the one opportunity that life gives us to enjoy and wonder at the world we live in.

Available in Hardcover, Paperback or ebook for Kindle


Advertisement



Thank you for sharing!







submit to reddit

Monday, 29 July 2024

Creationism Refuted - Cosmologists Are Changing Their minds Again - But It's Not What Creationists Hoped For


Smashing time with ALICE.
A picture shows the tracks of particles produced in a lead ion smashup in the Large Hadron Collider.
Image: ALICE/CERN
Discovery sheds light on the origins of matter in the early universe

Like all good scientists, cosmologists are re-examining what they thought they knew and, because there are new facts, they are allowing these facts to dictate their understanding. The issue is when exactly the matter in the Universe was created by natural forces.

But before creationists start celebrating, these cosmologists would laugh at the childish notion that it was all made by magic 10,000 years ago. In fact, the revision is over whether it was all produced in the first few picoseconds after the Big Bang, or 0.000001 seconds later. There is no doubt about whether the Big Bang happened or how long ago it happened and it was many orders of magnitude longer ago than Creationists like to imagine.

The problem is that in the immediate aftermath (and we are talking of picoseconds) the Universe was far too hot (some 250,000 times hotter than the sun's core) for even elementary particles to form in the high-energy electromagnetic field in which quarks couldn't even interact.

Saturday, 27 July 2024

Bible Blunders - Why the Bible Could Not Have Been Written Or Inspired By The God Described In It


What happens when matter is squashed to the brink of collapse? We weighed a neutron star to help NASA find out

Assuming you could speak whatever ancient form of Hamito-Semitic language the Bronze Age authors of Genesis spoke; what do you think they would say if you asked them how to weigh a neutron star?

They might just about grasp the meaning of 'weigh' but 'neutron' and 'star', let alone 'neutron star'?

The plain fact is that we not only speak a different language but have words for ideas and objects which would have been incomprehensible to people who thought the entire Universe was a small, flat planet with a dome over it, that contained nothing that couldn’t be found within a day or two's walks of their pastures in the Middle Eastern petty state of Canaan, later to split up into even smaller waring tribal area under the leadership of despotic warlords.

You could have done the same with words like 'electricity', 'atom', bacteria', 'virus', 'genes', 'energy', 'galaxy', 'thermodynamics', 'chemistry', 'physics' and, of course 'evolution'. These are all as absent from the Bible as are elephants, penguins, north and south-poles, democracy, civil rights, or gender equality, because the authors knew nothing about them and had no way of knowing anything about them.

It wasn't that they were stupid, after all it probably takes a lot of intelligence and a long apprenticeship to understand the needs of a herd of sheep and/or goats and where the best grazing is without encroaching on the neighbouring tribes grazing rights. My dear old maternal grandfather was a highly-respected third-generation shepherd in his day who was head-hunted to look after a prize-winning flock of Oxford Downs and given a cottage to live in, that his family then lived in for four generations. He was by no means a stupid man - simplistic in his understanding of many things. A fundamentalist Christian who knew the Bible by heart and took everything in it as 'Gospel truth' and misogynistic to the core, but not stupid.

But they not only lacked the technology (how can you learn about bacteria when you don't have glass good enough to make a microscope) but they believed they knew the answers already. They thought they knew the answers to the questions their limited horizons suggested - and the answer was always the same - a god did it (which god or gods didn't matter, it was the god or gods the rest of the tribe believed in), so what would you want a microscope for? there is nothing in water that you can't see, except water. There is nothing over the earth but the dome with the sun and moon and stars fixed to it, so why would you need a telescope to find out about galaxies?
Web Analytics